
Unit 3

HTTP & ASP.NET Core

1



The relationship between ASP.NET Core, ASP.NET, .NET Core, and .NET Framework. 
ASP.NET Core runs on both .NET Framework and .NET Core, so it can run cross-platform.



ASP.NET Core application model



How does 
an HTTP 
web 
request 
work?



How does an HTTP web request work

5

 the user starts by requesting a web page, which causes an HTTP 
request to be sent to the server. The server interprets the request, 
generates the necessary HTML, and sends it back in an HTTP 
response. The browser can then display the web page.

 Once the server receives the request, it will check that it makes 
sense, and if it does, will generate an HTTP response. Depending on 
the request, this response could be a web page, an image, a 
JavaScript file, or a simple acknowledgment. 

 As soon as the user’s browser begins receiving the HTTP response, it 
can start displaying content on the screen, but the HTML page may 
also reference other pages and links on the server. 



How does 
ASP.NET 
Core 
process 
a request?

6



How does ASP.NET Core process a request?

7

 A request is received from a browser at the reverse proxy, which passes
the request to the ASP.NET Core application, which runs a self-hosted
web server.

 The web server processes the request and passes it to the body of the
application, which generates a response and returns it to the web server.
The web server relays this to the reverse proxy, which sends the response
to the browser.

 benefit of a reverse proxy is that it can be hardened against potential
threats from the public internet. They’re often responsible for additional
aspects, such as restarting a process that has crashed. Kestrel can stay as
a simple HTTP server. Think of it as a simple separation of concerns:
Kestrel is concerned with generating HTTP responses; a reverse proxy is
concerned with handling the connection to the internet.



Common web application architectures

 monolithic application

 All-in-one applications

 Layered Architecture

 Traditional "N-Layer" architecture applications

 Clean architecture

8



Monolithic Application

 A monolithic application is one that is entirely self-contained, in

terms of its behavior.

 It may interact with other services or data stores in the course of

performing its operations, but the core of its behavior runs within its

own process and the entire application is typically deployed as a

single unit.

 If such an application needs to scale horizontally, typically the entire

application is duplicated across multiple servers or virtual machines.

9



All-in-one applications

 The smallest possible number of projects for an application
architecture is one. In this architecture, the entire logic of the
application is contained in a single project, compiled to a single
assembly, and deployed as a single unit.

 A new ASP.NET Core project, whether created in Visual Studio or from
the command line, starts out as a simple "all-in-one" monolith. It
contains all of the behavior of the application, including presentation,
business, and data access logic. In a single project scenario, separation
of concerns is achieved through the use of folders. The default
template includes separate folders for MVC pattern responsibilities of
Models, Views, and Controllers, as well as additional folders for Data
and Services. Figure shows the file structure of a single-project app.

10



11



 Presentation details should be limited as much as possible to the Views
folder, and data access implementation details should be limited to classes
kept in the Data folder. Business logic should reside in services and classes
within the Models folder.

 Although simple, the single-project monolithic solution has some
disadvantages:

◦ As the project's size and complexity grows, the number of files and
folders will continue to grow as well. User interface (UI) reside in multiple
folders, which aren't grouped together alphabetically.

◦ Business logic is scattered between the Models and Services folders, and
there's no clear indication of which classes in which folders should
depend on which others. This lack of organization at the project level
frequently leads to spaghetti code.

◦ To address these issues, applications often evolve into multi-project
solutions, where each project is considered to reside in a particular layer
of the application.

12



Layered Architechture

 As applications grow in complexity, one way to manage that 
complexity is to break up the application according to its 
responsibilities or concerns. This follows the separation of concerns 
principle and can help keep a growing codebase organized so that 
developers can easily find where certain functionality is implemented. 

 Layered architecture offers a number of advantages beyond just code 
organization, though. By organizing code into layers, common low-
level functionality can be reused throughout the application. 

 With a layered architecture, applications can enforce restrictions on 
which layers can communicate with other layers. This helps to achieve 
encapsulation. When a layer is changed or replaced, only those layers 
that work with it should be impacted. By limiting which layers depend 
on which other layers, the impact of changes can be mitigated so that 
a single change doesn't impact the entire application.

13



Traditional "N-Layer" architecture applications

14



Traditional "N-Layer" architecture applications

 These layers are frequently abbreviated as UI, BLL (Business Logic
Layer), and DAL (Data Access Layer). Using this architecture, users
make requests through the UI layer, which interacts only with the BLL.
The BLL, in turn, can call the DAL for data access requests. The UI layer
shouldn't make any requests to the DAL directly, nor should it interact
with persistence directly through other means. Likewise, the BLL should
only interact with persistence by going through the DAL.

 One disadvantage of this traditional layering approach is that compile-
time dependencies run from the top to the bottom. That is, the UI layer
depends on the BLL, which depends on the DAL. This means that the
BLL, which usually holds the most important logic in the application, is
dependent on data access implementation details (and often on the
existence of a database). Testing business logic in such an architecture is
often difficult, requiring a test database. The dependency inversion
principle can be used to address this issue.

15



Figure shows

an example

solution,

breaking the

application into

three projects

by

responsibility

(or layer).

16



Clean architecture

 Applications that follow the Dependency Inversion Principle as well as the
Domain-Driven Design (DDD) principles tend to arrive at a similar
architecture. It's been cited as the Onion Architecture or Clean

Architecture.

 Clean architecture puts the business logic and application model at the
center of the application. Instead of having business logic depend on data
access or other infrastructure concerns, this dependency is inverted:

infrastructure and implementation details depend on the Application Core.

 This is achieved by defining abstractions, or interfaces, in the Application

Core, which are then implemented by types defined in the Infrastructure
layer. A common way of visualizing this architecture is to use a series of
concentric circles, similar to an onion.

17



Figure: style of architectural representation.
18



Clean Architecture

 In the diagram, dependencies flow toward the innermost circle. The Application

Core takes its name from its position at the core of this diagram. And you can

see on the diagram that the Application Core has no dependencies on other

application layers.

 The application's entities and interfaces are at the very center.

 Just outside, but still in the Application Core, are domain services, which

typically implement interfaces defined in the inner circle.

 Outside of the Application Core, both the UI and the Infrastructure layers

depend on the Application Core, but not on one another (necessarily).

19



Figure shows a more traditional horizontal layer diagram that better reflects the 

dependency between the UI and other layers.
20



ASP.NET Core Architecture Overview

 The ideology behind ASP.NET Core in general, as the name suggests, is
to lay out web logic, infrastructure, and core components from each other
in order to provide a more development-friendly environment.

 The concept is somewhat similar to "N" tier/layer architecture, the only

difference is that ASP.NET Core defines the layers as the core
component of the platform which relieves the developer from redefining it
in order to make a solution more modular and reusable.

 What happens in ASP.NET Core is that the main business logic and UI
logic are encapsulated in ASP.NET Core Web App layer, while the

database access layer, cache services, and web API services are
encapsulated in infrastructure layer and common utilities, objects,
interfaces and reusable business services are encapsulated as micro-

services in application core layer.
21



ASP.NET Core Architecture Overview

 ASP.NET Core creates necessary pre-defined "N" tier/layers
architecture for us developers automatically, which saves our time
and effort to worry less about the complexity of necessary "N"
tier/architecture of the web project and focus more on the business
logic.

 ASP.NET Core that brings the benefit of a pre-built architectural
framework that eases out tier deployment of the project along with
providing pre-build Single Page Application (SPA) design pattern,
Razor Pages (Page based more cleaner MVC model) design
pattern, and traditional MVC (View based model) design pattern.

 These design patterns are mostly used in a hybrid manner but can
be utilized as an individual-only pattern as well.

22



23



MVC(Model – View - Controller) Design Pattern

 The MVC design has actually been around for a few decades, and

it's been used across many different technologies.

 The MVC design pattern is a popular design pattern for the user

interface layer of a software application.

 In larger applications, you typically combine a model-view-controller

UI layer with other design patterns in the application, like data

access patterns and messaging patterns.

 These will all go together to build the full application stack.

24



MVC(Model – View - Controller) Design Pattern

 The MVC separates the user interface (UI) of an application into the

following three parts −

 The Model − A set of classes that describes the data you are

working with as well as the business logic.

 The View − Defines how the application’s UI will be displayed. It is a

pure HTML which decides how the UI is going to look like.

 The Controller − A set of classes that handles communication from

the user, overall application flow, and application-specific logic.

25



Idea Behind MVC

 The idea is that you'll have a component called the view which is solely
responsible for rendering this user interface whether it should be HTML or
whether it actually should be a UI widget on a desktop application.

 The view talks to a model, and that model contains all the data that the
view needs to display.

 In a web application, the view might not have any code associated with it
at all.

 It might just have HTML and then some expressions of where to take the
pieces of data from the model and plug them into the correct places
inside the HTML template that you've built in the view.

 The controller organizes everything. When an HTTP request arrives for
an MVC application, the request gets routed to a controller, and then it's
up to the controller to talk to either the database, the file system, or a
model.

26



Idea Behind MVC

27



Projects and Conventions

28



Projects and Conventions

 .csproj –

Visual Studio now uses 

.csproj file to manage 

projects. 

We can edit the .csproj

settings by : 

 right click on the 

project

 Select Edit < project-

name>.csproj as 

shown below.

29



Projects and Conventions

 The .csproj for the project looks like above.

 The csproj file includes settings related to targeted .NET Frameworks, project 

folders, NuGet package references etc.
30



Projects and Conventions

 Dependencies

The Dependencies in the

ASP.NET Core project

contain all the installed

server-side NuGet packages,

as shown.

31



 Right click on "Dependencies" and then click "Manage NuGet Packages.." to see

the installed NuGet packages, as shown below.

 It has installed three packages, Microsoft.AspNetCore.App package is for

ASP.NET web application, Microsoft.AspNetCore.Razor.Design package is for Razor

engine, and Microsoft.NETCore.App package is for .NET Core API.

32



Properties : The Properties node includes launchSettings.json file which includes Visual 

Studio profiles of debug settings. The following is a default launchSettings.json file.

33


