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Transaction Concept

• A transaction is a sequence of operations that form a single unit of work.
• Every Statement in the database is considered as transaction.
• A transaction (set of operations) may be stand-alone specified in a high

level language like SQL submitted interactively, or may be embedded
within a program.

• Transaction boundaries:
– Begin and End transaction.

• An application program may contain several transactions separated by the
Begin and End transaction boundaries.

• Commit a transaction if successful else rollback if errors.
• Transaction processing means dividing information processing up into

individual, indivisible operations, called transactions, that complete or fail
as a whole; a transaction can't remain in an intermediate, incomplete,
state (so other processes can't access the transaction's data until either
the transaction has completed or it has been "rolled back" after failure).

• Transaction processing is designed to maintain database integrity (the
consistency of related data items) in a known, consistent state.

2



ACID Properties

• Atomicity
– Either all operations of a transaction are reflected in the

database or none of them .“all or nothing”

• Consistency
– If the database was in a consistent state before the transaction

started, it will be in a consistent state after the transaction has
been executed.

• Isolation
– If transactions are executed in parallel, the effects of an ongoing

transaction must not be visible to other transactions.

• Durability
– After a transaction finished successfully, its changes are

persistent and will not be lost.
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Transaction to transfer money from 
account A to B

1. Start transaction
2. Read(A)
3. A:=A-1000
4. Write(A)
5. Read(B)
6. B:=B+1000
7. Write(B)
8. Commit

• Atomicity
– If the transaction fails after step 4 but before step 8, the updates on A should not be

reflected in the database (rollback)
• Consistency

– The sum of A and B should not be changed by the transaction
• Isolation

– If another transaction is going to access the partially updated database between step 4
and 7, it will see an inconsistent database (with a sum of A and B which is less than it
should be)

• Durability
– Once the money has been transferred from A and B (commit), the effect of the

transaction must persist.
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Transaction State

• A transaction must be in one of the following states:
– Active state:

• It is initial state of transaction. Transaction is in this state while executing. 
A transaction goes into an active state immediately after it starts 
execution, where it can issue read and write operation.

– Partially Committed:
• when the transaction finish or ends it moves to the partially committed 

state (after the last statement has been executed).
– Failed:

• A transaction can got to the failed state if one of the check fails or if the 
transaction is aborted during its active state. The transaction may rolled 
back to undo the effect of its write operation on the database.

– Aborted:
• A transaction is in this state when after the transaction has been rolled 

back and the database has been restored to its state prior to the start of 
the transaction.

– Committed:
• A transaction reaches it commit point when all its operations that access 

the database have been executed successfully then the transaction enters 
in committed state. 5



State Transition diagram of a 
Transaction
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Concurrent Executions

• Transaction processing system usually allow multiple transaction to
run concurrently.

• When transactions are executing concurrently in an interleaved
fashion, then the order of execution of operation from the various
transaction is known as a schedule.

• Allowing multiple transactions to run concurrently and allowing
multiple transaction to update data concurrently cause several
complications with consistency of the data.

• Advantages are:
▪ increased processor and disk utilization, leading to better 

transaction throughput
• E.g. one transaction can be using the CPU while another is reading from or 

writing to the disk

▪ reduced average response time for transactions: short transactions 
need not wait behind long ones.
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Schedule

• Scheduler can be applied basically in two ways:
– Serial execution of transaction

• Each operation within a transaction can be executed
atomically

• Any serial execution of a set of transactions T1 , …,Tn by
different users is regarded as a correct result.

– Parallel execution of transaction
• Improves the throughput and resource utilization as well as

the average response time
• But too much parallelism can lead to wrong results (dirty

reads, lost updates)
• The scheduler has to choose the appropriate concurrency

control scheme to avoid problems during parallel execution
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Schedule

• When several transactions run concurrently, database
consistency can be destroyed despite the correctness of
each individual transaction.

• The database system must control the interaction among
the concurrent transaction to prevent them for destroying
the consistency of the database.

• It is done through the concurrency control mechanism.
• A schedule S specifies the chronological order in which the

operations of concurrent transactions are executed
– A schedule for the transaction T1 , …., T2 must contain all

operations of these transactions
– The schedule must preserve the order of the operation in each

individual transaction
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Schedule (e.g. Serial Schedule)
• Let transaction T1 transfer Rs. 10000 from account A to B and T2 transfer

10% of the balance from A to B.
• Critical are the read (R) and write (W) operation
• T1: read (A);

A:=A-10000; // A:=20000-10000
write (A);
read (B);
B:=B+10000; //B:=2000+10000=12000
write (B);

• T2: read (A);
temp=A*0.1; //temp:=10000*.1=1000
A:=A - temp;//A:=10000-1000=9000
write (A);
read (B);
B:=B + temp; // B:= 12000+1000=13000
write (B);
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E.g. Parallel Schedule

• T1: read (A)
A:=A-10000 // A:=20000-10000
write (A)

• T2: read (A)

temp=A*0.1; //temp:=10000*.1=1000
A:=A-temp;
write (A);

• T1: read (B)
B:=B+10000 //B:=2000+10000=12000
write(B)

• T2: read (B)
B:=B + temp ; // B:= 12000+1000=13000
write (B)
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E.g. Parallel Schedule

• this schedule does not preserve the sum of A 
and B and therefore leads to problems 
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Serializability

• Basic Assumption – Each transaction preserves database consistency.
• Thus serial execution of a set of transactions preserves database consistency.
• The main objective of Serializability is to search non-serial schedules that allow transaction to

execute concurrently without interfering one another transaction and produce the result
database state that could be produced by a serial execution.

• We can conclude that if a non serial schedule is correct if it produces the same results as
some serial execution. Such a schedule that is equivalent to a serial schedule is said to be
serializable.

• A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule.
Different forms of schedule equivalence give rise to the notions of:

1. conflict serializability
2. view serializability

• Ordering of read and write is important
• Rules

– If two transactions only read data item they do not conflict and order is not important.
– If two transactions either read or write completely separate data items, they do not

conflict and order is not important.
– If one transaction writes a data item and another reads or writes same data items, order

of execution is important.
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Example
T1 T2 T3

R(a)

R(b)

R(c)

W(a)

W(b)

W(c)

commit commit commit

T1 T2 T3

R(a)

W(b)

Commit

R(b)

W(b)

Commit

R(c)

W(c)

CommitSchedule 1

Schedule 2

Here, the actions of the transactions in schedule 1 are not executed as same as in 2,
but at the end 1 gives the same result as 2.
Thus, it is considered as Serializable. 14



Conflict Serializability

• Instructions li and lj of transactions Ti and Tj respectively, conflict

–if and only if there exists some item Q accessed by both li and lj, and at 
least one of these instructions wrote Q:

• If a schedule S can be transformed into a schedule S´ by a series of swaps 
of non-conflicting instructions, we say that S and S´ are conflict 
equivalent.

• We say that a schedule S is conflict serializable if it is conflict equivalent to 
a serial schedule

Instruction li Instruction lj Result

Read(Q) Read(Q) No Conflict

Read(Q) Write(Q) Conflict

Write(Q) Read(Q) Conflict

Write(Q) Write(Q) Conflict
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Conflict Serializability

• Schedule A can be transformed into Schedule B, a serial schedule where T2 follows T1, by 
series of swaps of non-conflicting instructions.  Therefore Schedule A is conflict serializable.

Schedule A Schedule B
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Conflict Serializability

• Example of a schedule that is not conflict serializable:

• We are unable to swap instructions in the above
schedule to obtain either the serial schedule < T3, T4 >, or
the serial schedule < T4, T3 >.
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View Serializability

• Two schedules are said to be view equivalent if the
following three conditions hold:

1. For each data item Q, if transaction Ti reads the initial value of Q
in schedule S, then transaction Ti must , in schedule S’ also read
the initial value of Q.

2. For each Q, if Ti executes read(Q) in S and if value was produced
by write(Q) operation executed by Tj, then the read(Q) of Ti
must, in S’ , also read value of Q produced by same write(Q) of Tj

3. For each Q, the transaction that performs the final write(Q)
operation in S must perform the final write(Q) operation in S’.

• View serializability:

– Definition of serializability based on view equivalence. 

– A schedule is view serializable if it is view equivalent
to a serial schedule. 
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View Serializability

• Schedule X is a view serializable schedule.

• It is view equivalent to the serial schedule<T3,T4,T5> since the one
Read(Q) reads the initial value of Q in both schedules and T5 performs the
final Write of Q in both schedules.

• Here, Writes of T4 and T5 are called blind writes.

• Every conflict serializable schedule is also view serializable but not vice
versa.

T3 T4 T5

Read(Q)

Write(Q)

Write(Q)

Write(Q)

Schedule X
19

T3 T4 T5

Read(Q)

Write(Q)

Write(Q)

Write(Q)

Schedule Y



Testing of Serializability

• For a testing of Serializability the simple and efficient method is to construct a
directed graph called a precedence graph from S.

• Given a schedule S, a precedence graph is a directed graph G= (N, E) where
– N=set of nodes
– E=set of directed Edges

• Create as follows
– Create a node for each transaction
– A directed edge Ti→ Tj, if Tj reads the value of an item written by Ti.
– A directed edge Ti→ Tj, if Tj writes the value into an item after it has been

read by Ti.
• The set of edges consists of all edges  Ti → Tj for which one of three condition 

holds
– Ti executes write before Tj executes read
– Ti executes read before Tj executes write
– Ti executes write before Tj executes write
If an edge Ti → Tj exits in the precedence graph for S, then in any serial schedule 

S’ equivalent to S, Ti must appear before Tj .
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Example 

• A precedence graph is said to be acyclic if there are no cycles in the graph.

• The precedence graph for serializable schedule S must be acyclic, hence it can be
converted to a serial schedule.
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Concurrency Control

• Different concurrency control schemes can be used to
ensure the isolation property is ensured when multiple
transactions are executed in parallel.

• The DBMS must guarantee that only serializable
recoverable schedule are generated and it also guarantees
that no effect of committed transaction is lost, and no
effect of aborted (roll back) transaction remains in the
related database.

• Due to concurrent execution it is very hard to preserve the
isolation property. To ensure it, the system must control the
interaction among the concurrent transactions.

• The control is achieved through one of the mechanism
called concurrency control schemes.
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Lock Based Protocol

• A lock is a mechanism to control concurrent access to a data item
• Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using
lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction.

• Lock requests are made to concurrency-control manager. Transaction can proceed only after
request is granted.

• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the requested lock is compatible with locks 
already held on the item by other transactions

• Any number of transactions can hold shared locks on an item, 
– but if any transaction holds an exclusive on the item no other transaction may hold any 

lock on the item.
• If a lock cannot be granted, the requesting transaction is made to wait till all incompatible 

locks held by other transactions have been released.  The lock is then granted.
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Lock Based Protocol

• Example of a transaction performing locking:
T2: lock-S(A);

read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

• Locking as above is not sufficient to guarantee serializability — if A and B get
updated in-between the read of A and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks.

• Locking protocols restrict the set of possible schedules.

• The locking protocol must ensure serializability.
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Schedule for Transactions: 
non-serializable schedule

T1                       T2              concurrency-control manager
lock-X(B) 

grant-X(B, T1)
Read(B
B = B - 50;
write(B);
unlock(B); 

lock-S(A)
grant-S(A, T2)

read(A)
unlock(A)
lock-S(B)

grant-S(B, T2)
read(B);
unlock(B);
display(A+B);

lock-X(A);
grant-X(A, T2)

read(A);
A = A + 50;
write(A);
unlock(A);

T1: lock-X(B) T2: lock-S(A)

read(B)                 read(A)

B = B -50;             unlock(A)

write(B);                lock-S(B)

unlock(B); read(B);

lock-X(A); unlock(B);

read(A);                display(A+B);

A = A + 50;

write(A);

unlock(A);

Sample Transactions with Locks
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Pitfalls of Lock Based Protocol

• Consider the partial schedule
• Neither T3 nor T4 can make progress

– Executing  lock-S(B) causes T4 to wait for T3 to 
release its lock on B, while executing  lock-X(A)
causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock. 
– To handle a deadlock one of T3 or T4 must be 

rolled back and its locks must be released.

The potential for deadlock exists in most locking protocols.

Starvation is also possible if control manager is badly designed. For example:

A transaction may be waiting for an X-lock on an item, while a sequence 
of other transactions request and are granted an S-lock on the same item.  

The same transaction is repeatedly rolled back due to deadlocks.

Concurrency control manager can be designed to prevent starvation.
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Two Phase Locking Protocol
• This is a protocol which ensures conflict-serializable schedules.
• Phase 1: Growing Phase

– transaction may obtain locks 
– transaction may not release locks

• Phase 2: Shrinking Phase
– transaction may release locks
– transaction may not obtain locks

• The protocol assures serializability. 

– It can be proved that the transactions can be serialized in the 
order of their lock points (i.e. the point where a transaction 
acquired its final lock). 

• Two-phase locking does not ensure freedom from deadlocks

• Cascading roll-back is possible under two-phase locking. 
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Two Phase Locking Protocol

• Strict two-phase locking.

– Here a transaction must hold all its exclusive locks till it commits/aborts.

– No cascading rollback

• Rigorous two-phase locking is even stricter: 

– Here all locks (shared and exclusive) are held till commit/abort.

– No cascading rollback  (of course)

– In this protocol transactions can be serialized in the order in which they 
commit.

• There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used.

• However, in the absence of extra information (e.g., ordering of access to
data), two-phase locking is needed for conflict serializability in the
following sense:
Given a transaction Ti that does not follow two-phase locking, we can find
a transaction Tj that uses two-phase locking, and a schedule for Ti and Tj
that is not conflict serializable.
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2PL with Lock Conversion

• The original lock mode with (lock-X, lock-S)
– assign lock-X on a data D when D is both read and written 

• Two-phase locking with lock conversions:

– First Phase:        
– can acquire a lock-S on item
– can acquire a lock-X on item
– can convert a lock-S to a lock-X (upgrade)

– Second Phase:
– can release a lock-S
– can release a lock-X
– can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. 

• The refined 2PL gets more concurrency than the original 2PL 

• Strict two phase locking and rigorous two phase locking with lock 
conversion are used extensively in commercial database systems.
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Implementation of Locking

• A lock manager can be implemented as a separate process
to which transactions send lock and unlock requests

• The lock manager replies to a lock request by sending a lock
grant messages (or a message asking the transaction to roll
back, in case of a deadlock)

• The requesting transaction waits until its request is
answered

• The lock manager maintains a data-structure called a lock
table to record granted locks and pending requests

• The lock table is usually implemented as an in-memory
hash table indexed on the name of the data item being
locked
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Lock Table

• Black rectangles indicate granted locks, 
white ones indicate waiting requests

• Lock table also records the type of lock 
granted or requested

• New request is added to the end of the 
queue of requests for the data item, and 
granted if it is compatible with all earlier 
locks

• Unlock requests result in the request being 
deleted, and later requests are checked to 
see if they can now be granted

• If transaction aborts, all waiting or granted 
requests of the transaction are deleted 

– lock manager may keep a list of locks 
held by each transaction, to implement 
this efficiently
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Graph Based Protocol

• The tree-protocol is a simple kind of graph protocol. 
– Only exclusive locks are allowed.
– The first lock by Ti may be on any data item if there is no lock on 

the data item.
– Subsequently, a data Q can be locked by Ti only if the parent of 

Q is currently locked by Ti.
– Data items may be unlocked at any time. 

- in tree locking protocol a transaction may have to lock data 
items that it does   not access.

- increased locking overhead and additional waiting time
- potential decrease in concurrency
- it is deadlock free so no rollback
- unlocking may occur earlier

Graph-based protocols are an alternative to two-phase locking

Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data items.

If di→ dj then any transaction accessing both di and dj must access di before 
accessing dj.

Implies that the set D may now be viewed as a directed acyclic graph (DAG), 
called a database graph.
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Timestamp Based Protocol

• Each transaction is issued a timestamp when it enters the system. 

• If an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is 
assigned time-stamp TS(Tj) such that TS(Ti)  < TS(Tj). 

• The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for each 
data Q  two timestamp values:
– W-timestamp(Q) is the largest time-stamp of any transaction that 

executed write(Q) successfully.

– R-timestamp(Q) is the largest time-stamp of any transaction that 
executed read(Q) successfully.

• The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.
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Timestamp Ordering Protocol

• Suppose a transaction Ti issues a read(Q)
1.  If TS(Ti)  < W-timestamp(Q), 

– Ti needs to read a value of Q that was already overwritten. 
– Hence, the read operation is rejected, and Ti is rolled back.

2.  If TS(Ti)   W-timestamp(Q), 
– The read operation is executed, and R-timestamp(Q) is set to the maximum of R-timestamp(Q) 

and TS(Ti).

• Suppose that transaction Ti issues a write(Q).
1. If TS(Ti)  < R-timestamp(Q), 

The value of Q that Ti is producing was needed previously, and the system assumed that that 
value would never be produced. 
Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti)  < W-timestamp(Q), 
Then Ti is attempting to write an obsolete value of Q. 
Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, (  TS(Ti)  R-timestamp(Q) and TS(Ti)  W-timestamp(Q)) 
The write operation is executed, and W-timestamp(Q) is set to TS(Ti).
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Multiple Granularity
• Allow  data items to be of various sizes and define a hierarchy of data granularities, 

where the small granularities are nested within larger ones
– Can be represented graphically as a tree (but don't confuse with tree-locking 

protocol)
– When a transaction locks a node in the tree explicitly, it implicitly locks all the 

node's descendents in the same mode.
• Granularity of locking (level in tree where locking is done):

– fine granularity (lower in tree): high concurrency, high locking overhead
– coarse granularity (higher in tree): low locking overhead, low concurrency

• The highest level is the entire database and then area, file and record.
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Multiple Granularity

• In addition to S and X lock modes, there are three 
additional lock modes with multiple granularity:
– intention-shared (IS): indicates explicit locking at a lower 

level of the tree but only with shared locks.
– intention-exclusive (IX): indicates explicit locking at a lower 

level with exclusive or shared locks
– shared and intention-exclusive (SIX): the subtree rooted 

by that node is locked explicitly in shared mode and 
explicit locking is being done at a lower level with 
exclusive-mode locks.

• Intention locks allow a higher level node to be locked in 
S or X mode without having to check all descendent 
nodes.
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Multiple Granularity Locking Protocol

• Transaction Ti can lock a node Q, using the following rules:
1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any 

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent 

of Q is currently locked by Ti in either IX  or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node 

(that is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are 

currently locked by Ti.

• Observe that locks are acquired in root-to-leaf order,  whereas they 
are released in leaf-to-root order.
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Deadlock Handling

• System is deadlocked if there is a set of transactions such that every 
transaction in the set is waiting for another transaction in the set.

• Consider the following two transactions:

T1:     write (X)               T2:    write(Y)

write(Y)                         write(X)

• Schedule with deadlock

T1 T2

lock-X on X
write (X) 

lock-X on Y
write (Y)  
wait for lock-X on X
write(X)

wait for lock-X on Y
write(Y)
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Deadlock Handling

• To deal with deadlock, we can use:
– Deadlock prevention protocol

• Ensure that system will never enter a deadlock state

– Deadlock detection and Recovery scheme
• Try to recover system once it entered to deadlock state

• Both methods may result in transaction rollback.

• Prevention is used if probability of system 
entering a deadlock state is relatively high.

• Otherwise detection and recovery are more 
efficient.
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Deadlock Prevention

• Deadlock prevention protocols ensure that the system 
will never enter into a deadlock state. 

• Some prevention strategies :
– Require that each transaction locks all its data items before 

it begins execution (predeclaration).
– Impose partial ordering of all data items 

• require that a transaction can lock data items only in the order 
specified by the partial order (graph-based protocol).

– Timeout-Based Schemes :
• a transaction waits for a lock only for a specified amount of time. 

– After the wait time is out and the transaction is rolled back. (No 
deadlock!)

• simple to implement; but starvation is possible
• Also difficult to determine good value of the timeout interval.
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Deadlock Prevention

• Following schemes use transaction timestamps for the sake of 
deadlock prevention alone.
– Wait-die scheme — non-preemptive

• Older transaction may wait for younger one to release data item. 
• Younger transactions never wait for older ones; they are rolled back instead.
• A transaction may die several times before acquiring needed data item

– Wound-wait scheme — preemptive
• Older transaction wounds (forces rollback of) younger transaction instead of 

waiting for it. 
• Younger transactions may wait for older ones.
• May be fewer rollbacks than wait-die scheme.

• Both in wait-die and in wound-wait schemes, a rolled back 
transaction is restarted with its original timestamp. 
– Older transactions thus have precedence over newer ones in these 

schemes, and starvation is hence avoided.
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Deadlock Detection
• Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E), 

– V is a set of vertices (all the transactions in the system)
– E is a set of edges; each element is an ordered pair Ti →Tj.  

• If Ti → Tj is in E, then there is a directed edge from Ti to Tj

– implying that Ti is waiting for Tj to release a data item.
• When Ti requests a data item held by Tj, then Ti → Tj is inserted in the wait-for 

graph. 
– This edge is removed only when Tj is no longer holding a data item needed by 

Ti.
• The system is in a deadlock state if and only if the wait-for graph has a cycle.  
• The system invokes a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle 42



Deadlock Recovery

• When deadlock is detected:
– Some transaction will have to rolled back (made a

victim) to break deadlock.
• Select that transaction as victim that will incur minimum cost.

– Rollback -- determine how far to roll back transaction
• Total rollback: Abort the transaction and then restart it.
• Partial rollback: More effective to roll back transaction only

as far as necessary to break deadlock.

– Starvation happens if same transaction is always
chosen as victim.
• The system may include the number of rollbacks in the cost

factor to avoid starvation
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Starvation

• Problem of locking generates starvation.

• It occurs when a transaction cannot proceed for a
definite period of time while other transaction in
the system continue normally. This may occur if
the waiting scheme for locked items is unfair
giving priority to some transaction over other.

• It can be removed either by using FIFO queue or
the longer the transaction waits the higher
priority that it will get over another.
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