Mathematics II Syllabus
This page contains Syllabus of Mathematics II of BCA.
Title | Mathematics II |
Short Name | |
Course code | CACS154 |
Nature of course | Theory + Practical |
Second Semester | |
Full marks | 60 + 20 + 20 |
Pass marks | 24 + 8 + 8 |
Credit Hrs | 3 |
Elective/Compulsary | Compulsary |
Course Description
Course Description
This course includes the topics from calculus and computational methods such as limits and continuity, differentiation & its applications, integration and its applications, differential equation and different computational techniques which are essential as mathematical foundation for computing.
Course Objectives
This coarse makes students able to cognize the concept Calculus, Computational methods and their applications in the area of Social Science and Computer Application.
Units and Unit Content
- 1. Limits and Continuity
- teaching hours: 6 hrs
Limit of a function, Indeterminate forms, Algebric properties of limit (without proof), Theorems on Limits of Algebraic and Transcendental Function, Continuity of a function, types of discontinuity. Exercises on evaluation of limits and test of continuity.(Mathematica)
- 2. Differentiation
- teaching hours: 6 hrs
Ordered Pairs, Cartesian Product, Relation, Domain and Range of a Relation, Inverse of a Relation; Types of Relations: Reflective, Symmetric, Transitive, and Equivalence Relations. Definition of Function, Domain and Range of a Function, Inverse Function, Special Functions(Identity, Constant), Algebraic(Linear, Quadratic, Cubic), Trigonometric and Their Graphs. Definition of Exponential and Logarithmic functions, Composite Function.(Mathematica)
- 3. Application of Differentiation
- teaching hours: 8 hrs
The derivatives and slope of the curve; Increasing and decreasing function; convexity of curves; maximization and minimization of a function; Differentiation and marginal analysis;price and output; Competitive equilibrium of firm, Illustrations. Drawing graphs of algebraic function by using first and second order derivatives.(Mathematica)
- 4. Integration and Its Applications
- teaching hours: 8 hrs
Riemann Integral; Fundamental Theorem (Without Proof); Technique of Integration; Evaluation and Approximation of Definite Integrals; Improper Integrals; Application of Definite Integrals; Quadrate, Rectification; Volume and Surface Integral. Trapezoidal and Simpson's Rules of Numerical Integration.(Mathematica)
- 5. Differential Equations
- teaching hours: 7 hrs
Differential Equation and its Order and Degree, Differential Equations of First Order and First Degree; Differential Equations with Separable Variables, Homogenous and Exact Differential Equations.
- 6. Computational Method
- teaching hours: 10 hrs
Linear Programming Problem(LPP), Graphical Solution of LPP in two Variables, Solution of LPP by Simplex Method(up to 3 variables), Solution of System of Linear Equations by Gauss Elimination method, Gauss Seidel Method and Matrix Inversion Method, Bisection method, Newton-Raphson Method for Solving Non-Linear Equations.(Excel/Matlab)
Lab and Practical works
Laboratory- Works
Mathematica and/ or Matlab should he used for above mentioned topics.